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CS 188: Artificial Intelligence

Spring 2010

Lecture 15: Bayes’ Nets II – Independence

3/9/2010

Pieter Abbeel – UC Berkeley

Many slides over the course adapted from Dan Klein, Stuart Russell, 

Andrew Moore

Announcements

� Current readings

� Require login

� Assignments

� W4 due Thursday

� Midterm

� 3/18, 6-9pm, 0010 Evans  --- no lecture on 3/18

� We will be posting practice midterms

� One page note sheet, non-programmable calculators

� Topics go through Thursday, not next Tuesday
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Outline

� Thus far: Probability

� Today: Bayes nets

� Semantics

� (Conditional) Independence
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Probability recap

� Conditional probability

� Product rule

� Chain rule 

� X, Y independent iff:

� X and Y are conditionally independent given Z iff:
4
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Bayes’ Nets: Big Picture

� Two problems with using full joint distribution tables as 
our probabilistic models:
� Unless there are only a few variables, the joint is WAY too big to 

represent explicitly

� Hard to learn (estimate) anything empirically about more than a 
few variables at a time

� Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
� More properly called graphical models

� We describe how variables locally interact

� Local interactions chain together to give global, indirect 
interactions

� For about 10 min, we’ll be vague about how these interactions 
are specified
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Graphical Model Notation

� Nodes: variables (with domains)
� Can be assigned (observed) or 

unassigned (unobserved)

� Arcs: interactions
� Similar to CSP constraints

� Indicate “direct influence” between 
variables

� Formally: encode conditional 
independence (more later)

� For now: imagine that arrows 
mean direct causation (in 
general, they don’t!)
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Example: Coin Flips

X
1

X
2

X
n

� N independent coin flips

� No interactions between variables: 

absolute independence
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Example: Traffic

� Variables:

� R: It rains

� T: There is traffic

� Model 1: independence

� Model 2: rain causes traffic

� Why is an agent using model 2 better?

R

T
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Example: Traffic II

� Let’s build a causal graphical model

� Variables
� T: Traffic

� R: It rains

� L: Low pressure

� D: Roof drips

� B: Ballgame

� C: Cavity
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Example: Alarm Network

� Variables

� B: Burglary

� A: Alarm goes off

� M: Mary calls

� J: John calls

� E: Earthquake!
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Bayes’ Net Semantics

� Let’s formalize the semantics of a 
Bayes’ net

� A set of nodes, one per variable X

� A directed, acyclic graph

� A conditional distribution for each node
� A collection of distributions over X, one for 

each combination of parents’ values

� CPT: conditional probability table

� Description of a noisy “causal” process

A
1

X

A
n

A Bayes net = Topology (graph) + Local Conditional Probabilities
13

Probabilities in BNs

� Bayes’ nets implicitly encode joint distributions
� As a product of local conditional distributions

� To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

� Example:

� This lets us reconstruct any entry of the full joint

� Not every BN can represent every joint distribution
� The topology enforces certain conditional independencies
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Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X
1

X
2

X
n

Only distributions whose variables are absolutely independent 

can be represented by a Bayes’ net with no arcs. 15

Example: Traffic

R

T

+r 1/4

¬r 3/4

+r +t 3/4

¬t 1/4

¬r +t 1/2

¬t 1/2
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Example: Alarm Network

Burglary Earthqk

Alarm

John 

calls
Mary 

calls

B P(B)

+b 0.001

¬b 0.999

E P(E)

+e 0.002

¬e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e ¬a 0.05

+b ¬e +a 0.94

+b ¬e ¬a 0.06

¬b +e +a 0.29

¬b +e ¬a 0.71

¬b ¬e +a 0.001

¬b ¬e ¬a 0.999

A J P(J|A)

+a +j 0.9

+a ¬j 0.1

¬a +j 0.05

¬a ¬j 0.95

A M P(M|A)

+a +m 0.7

+a ¬m 0.3

¬a +m 0.01

¬a ¬m 0.99

Size of a Bayes’ Net

� How big is a joint distribution over N Boolean variables?

2N

� How big is an N-node net if nodes have up to k parents?

O(N * 2k+1)

� Both give you the power to calculate

� BNs: Huge space savings!

� Also easier to elicit local CPTs

� Also turns out to be faster to answer queries (coming)
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Bayes’ Nets

� So far: how a Bayes’ net encodes a joint distribution

� Next: how to answer queries about that distribution
� Key idea: conditional independence

� After that: how to answer numerical queries (inference) 
more efficiently than by first constructing the joint 
distribution

19

Conditional Independence

� Reminder: independence
� X and Y are independent if

� X and Y are conditionally independent given Z

� (Conditional) independence is a property of a 
distribution
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Example: Independence

� For this graph, you can fiddle with θ (the CPTs) all you 

want, but you won’t be able to represent any distribution 

in which the flips are dependent!

h 0.5

t 0.5

h 0.5

t 0.5

X
1

X
2

All distributions
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Topology Limits Distributions

� Given some graph 

topology G, only certain 

joint distributions can 

be encoded

� The graph structure 

guarantees certain 

(conditional) 

independences

� (There might be more 

independence)

� Adding arcs increases 

the set of distributions, 

but has several costs

� Full conditioning can 

encode any distribution

X

Y

Z

X

Y

Z

X

Y

Z
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Independence in a BN

� Important question about a BN:
� Are two nodes independent given certain evidence?

� If yes, can prove using algebra (tedious in general)

� If no, can prove with a counter example

� Example:

� Question: are X and Z necessarily independent?
� Answer: no.  Example: low pressure causes rain, which 

causes traffic.

� X can influence Z, Z can influence X (via Y)

� Addendum: they could be independent: how?

X Y Z

Causal Chains

� This configuration is a “causal chain”

� Is X independent of Z given Y?

� Evidence along the chain “blocks” the influence

X Y Z

Yes!

X: Low pressure

Y: Rain

Z: Traffic
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Common Cause

� Another basic configuration: two 
effects of the same cause
� Are X and Z independent?

� Are X and Z independent given Y?

� Observing the cause blocks 
influence between effects.

X

Y

Z

Yes!

Y: Project due

X: Newsgroup 

busy

Z: Lab full
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Common Effect

� Last configuration: two causes of 
one effect (v-structures)

� Are X and Z independent?

� Yes: the ballgame and the rain cause traffic, 

but they are not correlated

� Still need to prove they must be (try it!)

� Are X and Z independent given Y?

� No: seeing traffic puts the rain and the 

ballgame in competition as explanation?

� This is backwards from the other cases

� Observing an effect activates influence 

between possible causes.

X

Y

Z

X: Raining

Z: Ballgame

Y: Traffic
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The General Case

� Any complex example can be analyzed 

using these three canonical cases

� General question: in a given BN, are two 

variables independent (given evidence)?

� Solution: analyze the graph
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