CS 188: Artificial Intelligence Spring 2010

Lecture 15: Bayes' Nets II - Independence 3/9/2010

Pieter Abbeel - UC Berkeley
Many slides over the course adapted from Dan Klein, Stuart Russell, Andrew Moore

Announcements

- Current readings
\rightarrow - Require login
- Assignments
- W4 due Thursday
\rightarrow (Midterm
\rightarrow 3/18, 6-9pm, 0010 Evans --- no lecture on $3 / 18$
\rightarrow We will be posting practice midterms
- One page note sheet, non-programmable calculators
- Topics go through Thursday, not next Tuesday

Outline

- Thus far: Probability
- Today: Bayes nets
- Semantics
- (Conditional) Independence

Probability recap

- Conditional probability $\quad P(x \mid y)=\frac{P(x, y)}{P(y)}$ ©
- Product rule

$$
P(x, y)=P(x \mid y) P(y)
$$

- Chain rule $P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots$
- X, Y independent iff: $\quad \forall x, y: P(x, y)=P(x) P(y)$ a$\zeta \quad \Leftrightarrow P(x \mid y)=P(x) \Leftrightarrow P(y|x|=P(y)$
- X and Y are conditionally independent given Ziff:
- $\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z) \quad X \Perp Y \mid Z){ }^{4}$

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models \leftarrow dincuted gquphiced madels
- We describe how variables locally interact $<$
- Local interactions chain together to give global, indirect interactions
- For about 10 min , we'll be vague about how these interactions are specified

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- Similar to CSP constraints
- Indicate "direct influence" between variables
- Formally: encode conditional independence (more later)
- For now: imagine that arrows
 mean direct causation (in general, they don't!)

Example: Coin Flips

- N independent coin flips
\rightarrow

. . .

- No interactions between variables: absolute independence

Example: Traffic

- Variables:
- R: It rains
- T: There is traffic
- Model 1: independence

- Model 2: rain causes traffic

- Why is an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model
- Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame

- C: Cavity

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
\rightarrow A set of nodes, one per variable X
\rightarrow A directed, acyclic graph
\rightarrow A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net $=$ Topology $($ graph $)+$ Local Conditional Probabilities

Probabilities in ENs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
$\rightarrow P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
- Example: \leftrightarrow Chaininle: $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$

- This tets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
- The topology enforces certain conditional independencies

Example: Coin Flips

$$
\begin{aligned}
& P(h, h, t, h)=P\left(x_{1}=h\right) \cdot P\left(x_{2}=h\right) \cdot P\left(x_{3}=t\right) \cdot P\left(x_{4}=h\right) \\
&=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\
& \text { Only distributions whose variables are absolutely independent }
\end{aligned}
$$

Example: Traffic

$$
P\left(\neg b, \neg c, \neg c_{1}+j, \neg m\right)
$$

Example: Alarm Network

B	E	A	$P(A \mid B, E)$
+b	+e	+a	0.95
+b	+e	$\neg \mathrm{a}$	0.05
+b	$\neg \mathrm{e}$	+a	0.94
+b	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.06
$\neg \mathrm{~b}$	+e	+a	0.29
$\neg \mathrm{~b}$	+e	$\neg \mathrm{a}$	0.71
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	+a	0.001
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.999

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables? $2^{\mathrm{N}} \underbrace{-1} \quad 2^{100}=10^{30}$
- How big is an N-node net if nodes have up to k parents?

- Both give you the power to calculate $P\left(X_{1}, X_{2}, \ldots X_{n}\right)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs $⿴ 囗$
- Also turns out to be faster to answer queries (coming) ${ }^{-\infty}$

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution $\&$
- Next: how to answer queries about that distribution a
- Key idea: conditional independence
- After that: how to answer numerical queries (inference) a more efficiently than by first constructing the joint distribution

Conditional Independence

- Reminder: independence
- X and Y are independent if

$$
\forall x, y \underline{P(x, y)}=P{ }^{P(x) P(y)}-\cdots \rightarrow X \Perp Y
$$

- X and Y are conditionally independent given Z
$\forall x, y, z P \underbrace{(x, y \mid z)}=P(x \mid z) P(y \mid z)--\rightarrow X \Perp Y \mid Z$
- (Conditional) independence is a property of a distribution
$P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)=P\left(x_{i} \mid P a\left(x_{i}\right)\right)$

Example: Independence

- For this graph, you can fiddle with θ (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Independence in a BN

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

- Question: are X and Z necessarily independent?
- Answer: no. Example: low pressure causes rain, which causes traffic.
- X can influence Z, Z can influence X (via Y)
- Addendum: they could be independent: how?

Causal Chains

- This configuration is a "causal chain"

X: Low pressure
Y: Rain
Z: Traffic

$$
P(x, y, z)=P(x) P(y \mid x) P(z \mid y)
$$

- Is X independent of Z given Y ?
- Evidence along the chain" "blocks" "the influence \&-

- Another basic configuration: two effects of the same cause
- Are X and Z independent? MO
- Are X and Z independent give

- Observing the cause blocks influence between effects.

The General Case

- Any complex example can be analyzed using these three canonical cases of using these three canonical cases
- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph

