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Announcements

= Current readings
—bd = Require login

= Assignments
—= = W4 due Thursday

— = Midterm
—>=  3/18, 6-9pm, 0010 Evans --- no lecture on 3/18
—=  We will be posting practice midterms
= One page note sheet, non-programmable calculators
= Topics go through Thursday, not next Tuesday




Outline

= Thus far: Probability

= Today: Bayes nets
—~ = Semantics
= (Conditional) Independence

Probability recap

_ . - _ P(=z,y)
Conditional probability P(zly) = Pl X
= Product rule P(z,y) = P(z|y)P(y) —
a,QuruAs’(f"%/

Chain rule P(X1,Xo,...Xn) = P(X1)P(X2|X1)P(X3|X1,X2)...

= X, Yindependentiff:  Vz,y: P(z,y) = P(z)P(y) <
= P(UW ©) (’(ams(’(\ﬂ

= X'and Y are cgnditionally independent gt (ff:
= Vx,y,z: P(w,yé = P(@P( 2 XL@ 4




Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables as
our probabilistic models:

= Unless there are only a few variables, the joint is WAY too big to
represent explicitly

= Hard to learn (estimate) anything empirically about more than a
few variables at a time

. @ a technique for describing complex joint

distributions (models) using simple, local distributions
(conditional prObabIhTIeS). dineded f,‘kLAmUs
= More properly called graphical models <3 T
= We describe how variables locally interact <—

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these interactions
are specified

Graphical Model Notation

= Nodes: variables (with domains) X
= Can be assigned (observed) or

unassigned (unobserved)

= Arcs: interactions
= Similar to CSP constraints /

* Indicate “direct influence” between
variables

= Formally: encode conditional
independence (more later)

. . Toothache @
= For now: imagine that arrows

mean direct causation (in
general, they don’t!)




Example: Coin Flips

= N independent coin flips

> ® ® - ®

= No interactions between variables:
absolute independence

Example: Traffic

= Variables:

" R: It rains a
= T: There is traffic
= Model 1: independence a

= Model 2: rain causes traffic /

= Why is an agent using model 2 better?




Example: Traffic Il

» |et’s build a causal graphical model

= Variables @

B: Ballgame
C: Cavity

= T: Traffic O —
R: It rains @ @
L: Low pressure
D: Roof drips @ A

Example: Alarm Network

= Variables
= B: Burglary
= A: Alarm goes off @
= M: Mary calls
= J: John calls i

» E: Earthquake!




Bayes’ Net Semantics

= Let’'s formalize the semantics of a
Bayes’ net
—» A set of nodes, one per variable X
—= A directed, acyclic graph

—® A conditional distribution for each node

= A collection of distributions over X, one for
each combination of parents’ values

P(Xl|ay...an)

= CPT: conditional probability table OT
= Description of a noisy “causal” process — et :K & W:s \,yua
AN wou

A Ba = Topology (graph) + Logal Conditional Probabilitie

O—O—>>0—>0—0
Probabilities in BNs

= Bayes’ nets implicitly encode joint distribution
= As a product of local conditional distributions
= To see what probability a BN gives to a full assignment, multiply

Toothache

all the relevant conditionals together: é &
n
—  P(wz1,22,...2n) = |] P(xi|parents(X;)) a
- - =1 N
| RAmPe as i, ®Oum sl SR

“+cavity, H+catch, ~toothache e

~ = POl 0w )
E Pk k| vea MkieTndag. | Agsintt !
Loty i f;ii&,f: e . \é:em\ww

isTets us reconstruct any entry of thm
= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies
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Example: Coin Flips

® ©® - @

P(X7) P(X5) P(Xn)
h |05 h |05 L h |05
t 0.5 t 0.5 t 0.5

P(h,h,t,h) = CH W) Ry ok - (A ) P16

— \ \ ) C)

= -Z - 92 Y Z
Only distributions whose variables are absolutely independent
can be represented by a Bayes’ net with no arcs. 15

Example: Traffic

COT P(R)

a | 14 g P(4r,—t) = ((‘“‘\
—r | a4
- ¢ PLak 4o
¢ P(T|R) l
\
e +r=>|  +t 3/4 = ’L\ * 71'
—t | 1/4
l
—r—| o+t 1/2 = Té
—t | 12
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Example: Alarm Network

B P(B) E P(E)
+b [0.001 Burglary +e [0.002
<5 [0.999 N —e |0.998%

A J PUIA) A M P(MA) +b |—e |—a [0.06
+a |+ (0.9 +a [+m |0.7

{

B E A

+b |+e [+a |0.95
+b |+e [—a |0.05
+b |—e [+a | 0.94

—-b |+e |+a |0.29
+a [—j (0.1 +a [—m |0.3 —-b |+e |—a |0.71
—a |+ [0.05 —a |+m |0.01 -b |—e |+a [0.001
—a |~ |0.95 ([=a |-m [0.99 —b |—e |-a [0.999 |7

Size of a Bayes’ Net

How big is a joint distribution over N Boolean variables?

2N -\ V) 30
[ 7 = 0

How big is an N-node net if nodes have up to k parents?

ON*2¢h) b (b)) g
W« 2

Both give youThe power to calculate P(X1, Xo,...Xn)

BNs: Huge space savings!

Also easier to elicit local CPTs <=—

Also turns out to be faster to answer queries (coming)&—
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Bayes’ Nets

= So far: how a Bayes’ net encodes a joint distribution <

= Next: how to answer queries about that distribution o_
= Key idea: conditional independence

= After that: how to answer numerical queries (inference) <~
more efficiently than by first constructing the joint
distribution

Conditional Independence

= Reminder: independence
= X and Y are independent if

Va,y P(z,y) =M --=-= XY
= X'and Y are conditionally independent given Z

Va,y,z P(x,ylz) = W-——» X1Y|Z

= (Conditional) independence is a property of a '
distribution

@( DN l \Ll i A et CQ(M\ \Qa“b(‘l)

23




Example: Independence

= For this graph, you can fiddle with 6 (the CPTs) all you
want, but you won’t be able to represent any distribution
in which the flips are dependent!

OO

X1 X5

P(X1) P(X5)
h |05 h |05
t |05 t |05

All distributions
24

Topology Limits Distributions

= Given some graph
topology G, only certain
joint distributions can
be encoded

= The graph structure
guarantees certain
(conditional)
independences

= (There might be more
independence)

= Adding arcs increases

the set of distributions,

but has several costs

Full conditioning can

encode any distribution




Independence in a BN

» |mportant question about a BN:
» Are two nodes independent given certain evidence?

= |If yes, can prove using algebra (tedious in general)

= |f no, can prove with a counter example

\)
= Example: GDQ Q(;L'LH\

NOS 0RO <

» Question: are X and Z necessarily independent?

= Answer: no. Example: low pressure causes rain, which
causes traffic.

= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?

Causal Chains

= This configuration is a ‘lcausal chain”

X: Low pressure
Y: Rain

Z: Traffic

P(z,y,2) = P(z)P(y|lz) P(z|y)

= |s X independent of Z given Y?

Blore g P2 kg Pl ly)
(G (X\j,L) PE—?’Z‘@(’)L\ ) P(x)P(y|z)

< >“ Yes!
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= Another basic configuration: two
effects of the same cause .4
= Are X and Z independent? NO

= Are )C(%r%lz mdcgﬁé‘rﬁaAeAﬁt iven Y
P(z|z,y) = P(z,y,2) |M7[ \Y Project due
R, Y, P(z,y) /éﬁ/‘@@%y X Newsgroup
2 P(led_\ _% busy
. ()(ﬁ\// Z I B %Q)\ %&\/ P(Z\/) Z: Lab full
- A

= Observing the cause blocks
influence between effects.

28

Coun st A O-0— 0o , (O o~ Canse. dQ) N S

~ Common Effect®° o

O—ﬂo

= |ast configuration: two causes of

one effect (v-structures) [€(xp) 2@( %t\-/\

{
= Are X and Z independent? @U(\l: '; z(:’)
z\Y
= Yes: the ballgame and the rain cause traffic,

but they are not correlated
= Still need to prove they must be (try it!) A0

= Are X and Z independent given Y? i

‘LY \U

; . . X: Raini
= No: seeing traffic puts the rain and the aning
ballgame in competition as explanation? Z: Ballgame
» This is backwards from the other cases Y: Traffic

= Observing an effect activates influence
between possible causes.
29
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The General Case

= Any complex example can be analyzed
using these three canonical cases

= General question: in a given BN, are two
variables independent (given evidence)?

= Solution: analyze the graph

30
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